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The convergence rate and the structures of the proper orthogonal decomposition
(POD) reconstruction are re-examined. The relatively slow convergence rate of the
wall-normal velocity and the over-prediction of the Reynolds shear stress from
POD-based representations of near-wall turbulence suggest that coherent structures
are too well correlated. This is a consequence of the directional preference of the
eigenfunctions toward the most energetic data (the streamwise motion at x+

2 = 13)
which may be relaxed by extracting the POD eigenfunctions from the streak modes
and the streamwise vortex modes separately. The rate of convergence and representa-
tion of structures may be improved by performing the POD in Squire’s coordinate
system (PODS). The statistical reconstruction of the localized (x+

2 � 84) PODS eigen-
functions from the large-eddy simulation (LES) database suggests that the conver-
gence rate of component energy, Reynolds shear stress and the correlation coefficient
of streamwise and wall-normal velocity improve significantly. The PODS eigenvalue
spectra and the spatial structures of the eigenfunctions indicate the presence of
observed streaks, streamwise vortices, and ejection/sweep events.

Dynamical models of the full channel turbulence are constructed by projecting
the Navier–Stokes equations onto the PODS eigenfunctions. The unresolved modes
are taken into account by closure models adapted from a constant eddy-viscosity
model, dynamic Smagorinsky, and dynamic one-coefficient mixed subgrid-scale (SGS)
model. Statistical moments obtained from PODS-based simulations are much more
accurate than their counterparts from POD-based simulations. This is particularly
true for the mean velocity, streamwise turbulent intensity, Reynolds shear stress and
the correlation coefficient of streamwise and wall-normal velocity.

1. Introduction
The presence of organized motions or coherent structures in the random-like tur-

bulent boundary layer is now widely accepted. Over the last thirty years, an enormous
amount of data has been obtained from both laboratory observation and numerical
simulation on the form of these coherent structures. Much of this has been summarized
in Robinson (1991). In the wall region, these coherent structures account for over



196 V. Juttijudata, J. L. Lumley and D. Rempfer

80 % of the turbulent kinetic energy and consist of alternating low- and high-speed
streaks combined with streamwise vortex motions. Kline et al. (1967) and Corino &
Brodkey (1969) were among the first to observe the recurring sequence of formation
and breakdown of these structures known as the bursting event. First, the updraught
between the vortices strengthens and the vortices move toward each other. The slow-
moving fluid that is ejected away from the wall by the vortices induces inflection
points in the mean velocity profile in the spanwise and wall-normal directions. As
the updraught is strengthening, the wall shear stress, or drag, is approaching its
peak value owing to the high-speed fluid being drawn down toward the wall by the
downdraught on the opposite side of the vortex. The inflection in the mean velocity
profile creates a secondary instability and a burst of Reynolds stress. This instability
transfers energy from large-scale motion (coherent motion) to smaller-scale motion
(incoherent motion). As a result of the energy transfer, the vortices are weakened and
move apart. Last, high-speed fluid comes down from the outer part of the flow and
sweeps the wall clean. In the turbulent boundary layer, it is plausible that the dynamics
of the coherent structures might be restricted to a very low-dimensional space and be
much simpler than that of the full Navier–Stokes equations. In the light of an order-
of-magnitude analysis, a better grasp of the dynamics of these coherent structures
could be key to a better understanding of the turbulent boundary layer as a whole.

Lumley (1967) proposes an objective technique to extract the coherent structures
from a random-like turbulent background. The method consists of extracting
candidate structures that are best correlated, in an average sense, to the turbulent
velocity field. The coherent structures are described by the orthogonal eigenfunctions
of the proper orthogonal decomposition (POD), also known as the Karhunen–Loève
decomposition (see Loève 1955; Sirovich 1987; Berkooz, Holmes & Lumley 1993;
Holmes, Lumley & Berkooz 1996). The resulting structures are also optimal in the
sense that the POD representation converges more rapidly (in an energy mean) than
any other linear representation.

In an early use of the POD in boundary layers, Bakewell & Lumley (1967) extract
the POD of the wall region from the two-point correlations of a single velocity
component based on experimental fully developed pipe flow data. Later Herzog
(1986) uses the same facility as Bakewell & Lumley (1967) to perform a fully three-
dimensional study of the wall region. Moin & Moser (1989), Sirovich, Ball & Keefe
(1990), Ball, Sirovich & Keefe (1991) and Sirovich, Ball & Handler (1991) thoroughly
study the coherent structures from the POD based on numerical fully developed
channel flow data. These studies lead to the identification of the coherent structures
consisting of pairs of counter-rotating streamwise vortices which produce a strong
updraught of low-speed fluid away from the wall and a more gentle downdraught of
high-speed fluid toward the wall.

The dynamical equations for the coherent structures may be obtained by projecting
the Navier–Stokes equations onto the low-order eigenfunctions, describing the most
energetic structures. These dynamical equations of the coherent structures are usually
referred to as the low-dimensional models. The incoherent motion is taken into
account by closure models. In the wall region of turbulent boundary layers, the
coherent structures are strong enough that we may be able to confine the models to a
very low-dimensional subspace and employ dynamical system tools in order to study
the qualitative dynamics of the flows. The ten-dimensional model by Aubry et al.
(1988) qualitatively reproduces the bursting process of turbulence in the wall region.
Aubry et al’s model exhibits intermittent features reminiscent of those found in the
wall region of boundary layers.
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In spite of the great success of qualitative results from low-dimensional models, their
quantitative studies and applications as predictive tools are quite limited. In early
investigations of the quantitative accuracy of low-dimensional models, Podvin &
Lumley (1998) and Podvin (2001) validate the low-dimensional models of boundary
layers (minimal flow unit in Podvin & Lumley (1998) and the near-wall region
of Aubry et al. (1988) in Podvin (2001)), including the phase-space plots, time series
and integrations of DNS and models from the same initial conditions. However, there
is no quantitative estimate of the model’s predictive accuracy. Gibson (2002) further
investigates both short-term and long-term tracking as well as the model statistics
for the wall region and Couette flow model. He re-examines the assumptions of the
mean velocity model and different boundary conditions for upper surface in Aubry
et al.’s wall region model (also see the discussion in § 4.2) in an effort to improve the
quantitative accuracy. He suggests replacing the mean velocity model in the model
by the dynamical equation derived directly from the Galerkin projection onto the
streamwise- and spanwise-invariant modes. Also he finds that it is necessary to enforce
both velocity and the pressure boundary conditions at the upper surface in the model.
There are also attempts to use POD-based models as predictive tools. Omurtag &
Sirovich (1999) perform a low-dimensional simulation of turbulent channel flow and
compare the statistics of mean velocity, turbulent intensities and Reynolds shear
stress. Juttijudata, Rempfer & Lumley (2001) develop a new large-eddy simulation
(LES) subgrid-stress model (SGS) for the near-wall motion based on the velocity
reconstruction of the localized low-dimensional models but could not obtain satisfac-
tory results. The general conclusion from these studies is that the low-dimensional
models cannot adequately reproduce the flow with quantitative accuracy unless a
large number of modes are used, or better closure models for the unresolved scales
can be found.

In our study, we will focus on developing a new set of basis functions for the
turbulent boundary layer which will be more suitable for dynamical modelling than the
POD basis function set. As mentioned above, one could also try to improve predictive
accuracy by developing a more accurate closure model for the unresolved modes.
However, the unresolved modes generally contribute to only a fraction of 10 % of the
total kinetic energy which is relatively small compared to the energy in the resolved
modes. Under this circumstance, the development of an alternative basis might be
a more promising way to improve the accuracy of the dynamical models. The issue
of the boundary conditions of the localized low-dimensional models and the well-
posedness of the problem has been explored in some depth in Gibson (2002) and
will not be considered here. Therefore we will only examine the dynamical models of
the full channel domain. In order to arrive at quantitatively accurate models, we will
only focus on very large systems of equations, which are in the neighbourhood of
3000–6000 coupled complex ordinary differential equations. The number of equations
in the systems is only smaller than the LES we use by a factor of about 30. It is
impossible to draw any analytical understanding or study the bifurcation from such
huge systems but they are not the goal of this study. Compared to Aubry et al.’s
ten-dimensional model, our dynamical models are in no way to be claimed as low-
dimensional models. Nevertheless, the heart of our dynamical models lies in the
projection of the Navier–Stokes equations onto the POD-type basis functions, just
like low-dimensional models, and may be (misleadingly) referred to low-dimensional
models from time to time.

This paper is organized as follows: § 2 examines the convergence rate, the velocity
structures and shortcomings of the (localized) POD reconstruction. The concept of
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Figure 1. Coordinate system in channel.

the POD in Squire’s coordinate system (PODS) is explored in § 3. Section 4 derives
the dynamical models of the PODS and the LES SGS models are modified to account
for the unresolved motion. Section 5 summarizes the numerical methods to solve our
dynamical models and the parameters of different simulations. Section 6 presents
results from different dynamical model simulations. We conclude our study in § 7.

2. Proper orthogonal decomposition of channel turbulence in a physical
coordinate system

2.1. Channel turbulence

In the channel, the domain, Ω , is bounded by two separated walls located at x2 = ± 1
(normalized by channel half-width, δ) in the wall-normal direction. Its size in the
streamwise and spanwise directions is L1 and L3 respectively. We shall assume perio-
dicity in the streamwise and spanwise directions and refer to these directions as
homogeneous. Throughout we use the Cartesian coordinate system shown in figure 1
in which (x1, x2, x3) and (x, y, z) denote the streamwise, wall-normal, and spanwise dir-
ection respectively. Velocity components in these directions are denoted by (u1, u2, u3)
and (u, v, w). Note that the Navier–Stokes equations and boundary condition for
channel turbulence are invariant under certain symmetries:

(a) spanwise reflection around the mid-plane of the channel:

Rx2
: (x1, x2, x3, u1, u2, u3) −→ (x1, −x2, x3, u1, −u2, u3);

(b) wall-normal reflection around the horizontal centreplane of the channel:

Rx3
: (x1, x2, x3, u1, u2, u3) −→ (x1, x2, −x3, u1, u2, −u3);

(c) streamwise and spanwise translations:

T�x1,�x3
: (x1, x2, x3, u1, u2, u3) −→ (x1 + �x1, x2, x3 + �x1, u1, u2, u3).

In other words, the action of these symmetry groups on the velocity ensemble of a
channel Navier–Stokes solution results in a velocity ensemble that is also the solution
of the equations and boundary condition. In the POD calculation, we also force the
wall-normal and spanwise reflection symmetry in the velocity ensemble to improve
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the convergence rate of the statistics and to ensure the wall-normal and spanwise
reflection symmetry in the resulting eigenfunctions. We also use the streamwise and
spanwise translation symmetries to reduce the POD in the streamwise and spanwise
directions to Fourier modes (see Holmes et al. 1996).

The channel turbulence database in this study is generated by large-eddy simulation
(LES) using a dynamic one-coefficient mixed subgrid-scale (SGS) model (see Sarghini,
Piomelli & Balaras 1999). The fourth-order wall-normal velocity/vorticity formulation
of the Navier–Stokes equations is integrated in time using a Fourier–Chebyshev
pseudo-spectral scheme (similar to that in Kim, Moin & Moser 1987). The nonlinear
term in the Navier–Stokes equations is cast in the skew-symmetric form and computed
without dealiasing. The time-advancement is performed by a semi-implicit third-order
Runge–Kutta time-stepping algorithm as in Spalart, Moser & Roger (1991). We
maintain a fixed volume flow rate throughout the simulation. The Reynolds number
of the channel flow simulation is 4000 based on the laminar centreline velocity, Uc,
and half-channel width, δ, equivalent to 172 based on computed friction velocity, uτ

(the correlation by Dean (1978) gives Reτ = 174). Wall units are based on computed
friction velocity and viscosity, and denoted by superscript +. The computational
domain normalized by the half-channel width is (L1, L2, L3) = (3π, 2, π), equivalent to
(L+

1 , L+
2 , L+

3 ) = (1640, 348, 547), and the resolution in the simulation is (N1, N2, N3) =
(32, 65, 48), equivalent to (�x+

1 , �x+
2min

, �x+
3 ) ≈ (51, 0.2, 11). We apply reflection sym-

metries to 600 independent realizations (separated in time by approximately �t =
1.5δ/Uc) in the statistical calculation. The symmetries produce a total of 4×600 = 2400
realizations in the ensemble. For one-point statistics, the number of samples is increa-
sed by averaging over horizontal (homogeneous) planes. Only the filtered part of the
LES velocity field is accounted for in the one-point turbulence statistics and two-point
spectral-density tensor unless stated otherwise.

2.2. The POD

The reader is directed to a monograph by Holmes et al. (1996) and review articles
by Berkooz et al. (1993) and Sirovich (1987) for a comprehensive review of the POD.
The fundamental idea of the POD is to look for the single, deterministic function
that is most similar (in an average sense) to the members of ui(x) within an ensemble
of realizations. The optimality constraint reduces to an eigenvalue problem whose
kernel is the two-point spectral-density tensor:∫

Ω2

〈
ûik (x2)û

∗
jk
(x ′

2)
〉
φjk (x

′
2) dx ′

2 = λkφik (x2), (2.1)

where ûik (x2) is the Fourier-transformed fluctuating velocity defined by

ûik =
1

L1L3

∫ L1

0

∫ L3

0

ui(x1, x2, x3) e−i(k1x1+k3x3) dx3 dx1,

and the corresponding velocity is given by

ui(x1, x2, x3) =

∞∑
k = −∞

ûik ei(k1x1+k3x3).

The asterisk denotes the complex conjugate and k = (k1, k3) is the wavenumber-
vector. In general, the averaging operation may either be an ensemble or temporal or
spatial or phase average. The eigenfunctions and eigenvalues of (2.1) are sometimes
referred to as the empirical eigenfunctions and eigenvalues. We implicitly use the
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fact that the eigenfunctions in homogeneous directions (streamwise and spanwise)
reduce to Fourier modes. Each realization may be decomposed into a mixed discrete
Fourier–POD decomposition of the form

ui(x, t) =

∞∑
k = −∞

∞∑
n =1

a
(n)
k (t) ei(k1x1+k3x3)φ

(n)
ik

(x2). (2.2)

From (2.2), the Fourier-transformed velocity is given by

ûik (x2) =

∞∑
n =1

a
(n)
k φ

(n)
ik

(x2), (2.3)

in which the modal coefficients can be computed from the inner product of the
velocity vector and the eigenfunctions,

a
(n)
k =
(
ûik , φ

(n)
ik

)
, (2.4)

where the inner product is defined by(
ûik , φ

(n)
ik

)
=

∫
Ω2

(
û1kφ

(n)∗
1k

+ û2kφ
(n)∗
2k

+ û3kφ
(n)∗
3k

)
dx2. (2.5)

We normalize the eigenfunctions such that(
φ

(n)
ik

, φ
(p)
ik

)
= δnp.

From Hilbert–Schmidt theory we know that there is a denumerable infinity of the
eigenvalues and eigenfunctions that provide a diagonal decomposition of the two-
point spectral-density tensor,〈

ûik (x2)û
∗
jk
(x ′

2)
〉
=

∞∑
n= 1

λ
(n)
k φ

(n)
ik

(x2)φ
(n)∗
jk

(x ′
2). (2.6)

The diagonal decomposition implies that the (random) modal coefficients of the
decomposition are uncorrelated on average,〈

a
(n)
k a

(m)∗
k

〉
= λ

(n)
k δnm.

We may order λ
(n)
k such that λ

(n)
k � λ

(n+1)
k ; hence the lowest-order eigenmode corres-

ponds to the most energetic turbulent structures.
Apart from the wall-normal and spanwise reflection symmetries in the velocity

ensemble as discussed in § 2.1, the incompressibility and no-slip boundary conditions
(or any linear boundary condition) are also inherited in the eigenfunctions. These two
properties are desirable properties of the basis functions that significantly simplify
the dynamical model construction.

2.3. The deficiencies of POD

Although the optimality constraint guarantees the optimality of the eigenfunctions
in an energy sense, it does not guarantee the optimality of individual component
energy nor Reynolds shear stress. Figures 2(a), 2(b), 2(c) and 2(d) show the statistical
reconstruction of streamwise and wall-normal turbulent intensity, Reynolds shear
stress and the correlation coefficient of the streamwise and wall-normal velocity from
the localized POD eigenfunctions in the region 0 � x+

2 � 84 compared to the statistics
from the LES filtered velocity field. To solve the eigenvalue problem, we expand the
two-point spectral-density tensor using Chebyshev polynomials in the wall-normal
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Figure 2. Statistical reconstruction from the localized (0 � x+
2 � 84) POD eigenfunctions:

(a) streamwise turbulent intensity, (b) wall-normal turbulent intensity, (c) Reynolds shear
stress and (d) correlation coefficient of streamwise and wall-normal velocity: solid, N = 1;
dotted, N = 4; points, N = 6; circles, LES.

direction and extract the eigenfunctions in Chebyshev space using a double-precision
complex Hermitian eigenvalue solver routine (ZHEEV) in LAPACK. In order to obtain
the localized POD eigenfunctions, the integral in (2.1) is evaluated over the portion
of the channel with 0 � x+

2 � 84 despite the global Chebyshev representation in
the full channel. The resulting eigenfunction Chebyshev coefficients are projected
onto the Chebyshev collocation points in the subdomain, x

j

2/δ = cos(π/64 × (j − 1))
where j =44, . . . , 65. Numerical integration in the inner product is defined by
using the trapezoidal rule. Note that in our terminology, speaking of POD velocity
reconstruction of the first N families of eigenfunctions implies summation over all the
Fourier modes; thus, by ‘families of eigenfunctions’ we refer to the set of functions
φ

(n)
ik

with upper index n, for any k.
It is clear that the low-order eigenfunctions contain over 100 % of the Reynolds

shear stress as shown in figure 2(c) (see also Moin & Moser 1989). The negative
contribution of the Reynolds shear stress in the higher-order eigenfunctions must be
included in the velocity expansion in order to remove the overproduction of Reynolds
shear stress. Another less obvious deficiency of POD eigenfunctions is the non-uniform
convergence rate of individual component energy. One can see in figures 2(a) and
2(b) that the convergence rate of streamwise turbulent intensity is much faster than
that of wall-normal turbulent intensity (and the spanwise turbulent intensity shown
in Juttijudata (2003)). The overproduction of Reynolds shear stress as shown in
figure 2(c) and the relatively slow convergence rate of wall-normal turbulent intensity
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result in the overproduction of the correlation coefficient as evident in figure 2(d).
Physically, the overproduction of the correlation coefficient implies that the POD
eigenfunctions produce structures which are ‘too coherent’. In other words, for a given
mean shear rate, the POD eigenfunctions require less input wall-normal turbulent
intensity than the physical structures in order to generate the same streamwise
turbulent intensity.

A closer examination of the POD eigenvalue problem reveals that the cause of the
too-coherent structures is the directional preference of the eigenfunctions (the principal
axes of the cloud of data points {ui(x, tk)}) to the most energetic component, which is
the streamwise motion at the location of maximum streamwise component energy
(x+

2 = 13), in this case. Because the low-order eigenfunctions prefer the streamwise mo-
tion over the wall-normal (and spanwise) motion, the low-order POD representation
is likely to almost fully reproduce streamwise turbulent intensity from a given smaller
wall-normal turbulent intensity.

The directional preference of the POD may be relaxed by either isolating the more
energetic streamwise motion from the less energetic lateral motion or by re-scaling
every component to the same order of magnitude. However, the incompressibility
condition of the eigenfunctions should be preserved in order to eliminate the pressure
contribution from dynamical models; hence the choice of isolating the streamwise
component from the lateral components is preferred.

3. Proper orthogonal decomposition of channel turbulence in Squire’s
coordinate system

3.1. The PODS

In an early attempt to decouple streamwise modes from lateral modes, Berkooz,
Holmes & Lumley (1991) take advantage of the streamwise-invarant assumption in
their model. They set the streamwise component of the eigenfunctions as the stream-
wise mode eigenfunctions, (φ(n)

1(0,k3)
, 0, 0), and the wall-normal and spanwise components

of the eigenfunctions as lateral mode eigenfunctions, (0, φ
(n)
2(0,k3)

, φ
(n)
3(0,k3)

), and develop

separate low-dimensional models for streamwise and lateral modes. For general non-
zero Fourier wavenumber cases, Waleffe (1995) proposes spliting the vector-value basis
functions into two orthogonal parts, i.e. φ

(n)
ik

= φ
(n)
ik,S + φ

(n)
ik,R where φ

(n)
ik,S = Pijφ

(n)
jk

and

φ
(n)
ik,R = (δij −Pij )φ

(n)
jk

with the projection matrix Pij =pipj/(pkpk) and pi =(−k3, 0, k1).
For streamwise-invariant modes, Waleffe’s splitting reduces to Berkooz et al.’s splitting.
Indeed, Waleffe’s splitting of the eigenfunctions bears some relation to Squire’s
transformation (see Squire 1933; Stuart 1963) and the POD in Squire’s coordinate
system (PODS), which will be further discussed again at the end of this section.

As suggested in Leonard & Wray (1982) and Moser, Moin & Leonard (1983), it
is natural to decompose the velocity vector in Fourier space into ‘plus-modes’ and
‘minus-modes’,

U+
k = (û

‖
k, v̂k, 0), and U−

k = (0, 0, û⊥
k ),

where û
‖
k and û⊥

k are horizontal velocity components parallel and perpendicular to
the wavenumber-vector, defined by

û
‖
k =

kxû + kzŵ

|k| , (3.1)

û⊥
k =

−kzû + kxŵ

|k| , (3.2)
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where |k| =
√

(k2
x + k2

z ). The horizontal velocity in the physical coordinate system may
be obtained from

ûk =
kxû

‖ − kzû
⊥

|k| , (3.3)

ŵk =
kzû

‖ + kxû
⊥

|k| . (3.4)

We exclude the k = (0, 0) mode from the representation. This decomposition amounts
to Squire’s transformation and its corresponding coordinate system is Squire’s
coordinate system. Note that the orientation of Squire’s coordinate system relative to
the physical coordinate system changes as a function of the wavenumber-vector.

The incompressibility condition in Squire’s coordinate system acts only on the
plus-modes:

i|k|û‖
k +

∂v̂k

∂y
=0. (3.5)

While the plus-modes need to satisfy both the boundary condition and incompressi-
bility condition, minus-modes need to satisfy only the boundary condition.

In streamwise-invariant space, the plus- and minus-mode Fourier-transformed
velocity exactly reduces to the lateral and streamwise modes respectively. On the
other hand, in the spanwise-invariant space, the plus- and minus-mode Fourier-
transformed velocity reduces to the streamwise and wall-normal modes and spanwise
modes. Clearly we will benefit from Squire’s transformation only if the most
energetic structures are approximately streamwise-invariant. In that case Squire’s
transformation allows us to approximately isolate streamwise motion in minus-modes
(that need to satisfy only the boundary condition) from lateral motion in plus-modes
(that need to satisfy both divergence-free and boundary conditions). The transforma-
tion to Squire’s coordinate system gives us the freedom to solve the POD eigenvalue
problem in plus- and minus-modes indepedently and still produces divergence-free
basis functions. Flow visualization suggests the observed streaks in turbulent boundary
layers (the most energetic structures) are relatively elongated in the streamwise
direction: the streamwise length often exceeds 1500 ν/uτ , and the spanwise width
ranges from 20 to 80 ν/uτ , e.g. Robinson (1991). In addition, the peaks of the one-
dimensional streamwise-component energy spectra at x+

2 = 13 are concentrated in the
zero-streamwise-wavenumber subspace. Under this condition, a substantial fraction of
the streamwise component energy is confined to the neighbourhood of the streamwise-
invariant modes and the usage of Squire’s transformation is advantageous.

Let us now derive the formulation of the POD in Squire’s coordinate system
(PODS). The basic idea is to separately apply the POD formulation to the plus- and
minus-modes for each Fourier mode. The PODS eigenvalue problems are∫

Ω2

〈
Û+

ik
(x2)Û

+∗
jk

(x ′
2)
〉
φ+

jk
(x ′

2) dx ′
2 = λ+

k φ+
ik
(x2), (3.6)∫

Ω2

〈
Û−

ik
(x2)Û

−∗
jk

(x ′
2)
〉
φ−

jk
(x ′

2) dx ′
2 = λ−

k φ−
ik
(x2), (3.7)

in which the eigenfunctions are normalized by(
φ

+(n)
ik

, φ
+(p)
ik

)
= δnp,(

φ
−(n)
ik

, φ
−(p)
ik

)
= δnp.
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We redefine the inner product as(
φ

+(n)
ik

, φ
+(n)
ik

)+
=

∫
Ω2

(
φ

+(n)
1k

φ
+(n)∗
1k

+ φ
+(n)
2k

φ
+(n)∗
2k

)
dx2,(

φ
−(n)
ik

, φ
−(n)
ik

)−
=

∫
Ω2

φ
−(n)
3k

φ
−(n)∗
3k

dx2.

The Fourier-transformed velocity field of the plus- and minus-modes is now in the
form

U+
k =


û

‖
k

v̂k

0

 =

∞∑
n= 1

a
+(n)
k


φ

+(n)
1k

φ
+(n)
2k

0

 , (3.8)

U−
k =


0
0

û⊥
k

 =

∞∑
n= 1

a
−(n)
k


0
0

φ
−(n)
3k

 , (3.9)

where the modal coefficients, a
+(n)
k and a

−(n)
k , are

a
+(n)
k =
(
U+

k , φ
+(n)
ik

)+
, (3.10)

a
−(n)
k =
(
U−

k , φ
−(n)
ik

)−
. (3.11)

The incompressibility condition (3.5) and symmetries inherited in (3.1) and (3.2)
imply that φ

+(n)
ik

needs to satisfy both the no-slip (or any linear) boundary condition
and the divergence-free condition:

i|k|φ+(n)
1k

+
∂φ

+(n)
2k

∂y
= 0, (3.12)

whereas φ
−(n)
ik

needs to satisfy only the no-slip boundary condition.
Let us consider Waleffe’s splitting (Waleffe 1995) again. It may be viewed as the

projection of the plus- and minus-modes of the vector-valued POD modes (from the
POD eigenvalue problem (2.1)) back onto the physical coordinate system:

φik,R =

kx/|k|
0

kz/|k|

0

1

0

0

0

0




φ
‖
k

φ2k

0

 , φik,S =

00
0

0

0

0

−kz/|k|
0

kx/|k|


0

0

φ⊥
k

 ,

where φ
‖
k and φ⊥

k are the horizontal components parallel and perpendicular to the
wavenumber-vector of the POD eigenfunctions defined as in (3.1) and (3.2):

φ
‖
k =

kxφ1k + kzφ3k

|k| , φ⊥
k =

−kzφ1k + kxφ3k

|k| .

Inheriting the properties of the POD eigenfunctions, φik,R and φik,S are pairwise-
orthogonal and divergence-free. However, unlike the PODS eigenfunction set, these
basis functions are not optimal for plus- and minus-modes.

3.2. Statistical reconstruction of PODS

In order to probe the performance of the PODS eigenfunctions, we first consider the
statistical reconstruction of the PODS eigenfunctions. Figure 3 shows the streamwise,
wall-normal and spanwise components and twice the kinetic energy content in the first
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Figure 3. The streamwise, wall-normal and spanwise component energy and twice kinetic
energy content across the localized domain (x+

2 � 84) from localized POD and PODS
reconstructions relative to the total energy content of the LES filtered field as a function
of the number of eigenfunction families; solid, PODS; points, POD.

11 families of the localized POD and PODS across the localized (x+
2 � 84) domain

relative to the total component energy content in the LES filtered field. As figure 3(d)
clearly reveals, PODS modes require approximately only two-thirds of the number
of mode families to capture the same amount of energy content as do POD mode
families. The drastic improvement of the PODS convergence rate in the component
energy is, in fact, a consequence of the substantial improvement of the convergence
rate in the lateral components as can be seen from figure 3(b) and 3(c). Because the
POD itself is largely biased to the streamwise-component, the streamwise-component
energy from the PODS expansion converges just slightly faster than that from the
POD expansion.

To prevent any confusion we should emphasize at this point that this apparent
faster convergence of PODS modes compared to standard POD modes with respect
to the total energy has been bought at the expense of a doubling of the number
of modes involved. In other words, in the case of the POD modes, a mode family
includes the number of eigenfunctions that is equal to the number of Fourier modes
present, but in the case of PODS modes, we have twice that number of eigenfunctions,
because we have eigenfunctions describing both the plus- and the minus-modes. Thus,
the ‘net-convergence’, taking into account the total number of eigenfunctions needed
to represent the velocity field to a given accuracy in the energy, is indeed slower for
the PODS modes than for the standard POD modes. This is as it should be, since
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Figure 4. Statistical reconstruction from the localized (0 � x+
2 � 84) PODS eigenfunctions:

(a) streamwise turbulent intensity, (b) wall-normal turbulent intensity, (c) Reynolds shear
stress and (d) correlation coefficient of streamwise and wall-normal velocity; solid, N =1;
dotted, N = 4; points, N = 6; circles, LES.

we can prove that no other set of eigenmodes can show faster convergence, in the
energy norm, than the standard POD modes. Nevertheless, as we will show below,
PODS modes have favourable properties over standard POD modes with regard to
modelling the dynamics of the turbulent flow.

Figures 4(a), 4(b), 4(c) and 4(d) show the statistical reconstruction of the streamwise
and wall-normal turbulent intensity, Reynolds shear stress and the correlation coeffi-
cient of streamwise and wall-normal velocity from the localized PODS eigenfunctions
in the region 0 � x+

2 � 84 against the statistics from the LES filtered velocity field. As
expected, the streamwise turbulent intensity reconstruction from the PODS expansion
is only slightly better than that from the POD expansion, as shown in figure 4(a). The
structures of the wall-normal (and spanwise, see Juttijudata (2003)) turbulent intensity
from the PODS eigenfunctions, on the other hand, improve significantly compared
to figure 2(b). Only 4 families of PODS modes are needed to almost fully reproduce
the LES wall-normal turbulent intensity except for a small under-reproduction in
the regions x+

2 � 20 and x+
2 � 75. The Reynolds shear stress reconstruction from the

PODS eigenfunctions also converges (more or less) monotonically to the resolved
LES Reynolds shear stress, unlike that from the POD eigenfunctions as shown in
figure 4(c). The first 4 PODS families are sufficient to almost fully reproduce the
stress. The correlation coefficient of streamwise and wall-normal velocity shown in
figure 4(d) again emphasizes the superiority of the PODS eigenfunctions over the POD
eigenfunctions. Again, the first 4 families of PODS are enough to capture all of the
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N 1 4 6 8 11

POD 29.17 69.55 77.62 82.67 87.94
PODS 32.16 77.54 87.17 92.57 96.58

Table 1. Percentage of energy content across the channel in the first N families of POD and
PODS modes in the full channel domain. For each POD and PODS family, the energies are
summed over all Fourier modes. The table shows the order, and energy percentage across the
channel in POD and PODS modes.

Order (l, m, n) λ λ+ λ− Degeneracy % Energy

1 (±1, ±2, 1) 9.8184 1.0687 8.7497 4 3.9694
2 (±1, ±1, 1) 7.4348 1.0443 6.3905 4 3.0058
3 (0, ±1, 1) 14.8535 0.7953 14.0581 2 3.0025
4 (±1, ±3, 1) 7.2845 0.6741 6.6103 4 2.9450
5 (±1, ±3, 2) 6.4577 0.5956 5.8621 4 2.6107
6 (±1, ±2, 2) 6.3714 0.5994 5.7720 4 2.5758
7 (±1, ±1, 2) 6.3323 1.0263 5.3060 4 2.5600
8 (±1, ±4, 1) 6.2872 0.5852 5.7021 4 2.5418
9 (±1, ±4, 2) 5.2958 0.4984 4.7974 4 2.1410

10 (±2, ±2, 1) 4.7291 0.7670 3.9621 4 1.9119

Table 2. The empirical eigenvalues of the first 10 dominant PODS modes in the full channel
domain. The table shows the order (integer harmonic) Fourier–PODS mode, its total, +
mode, − mode eigenvalues, its degeneracy, and its percentage of total average energy across
the channel.

key structures of the correlation coefficient. The over-reproduction of correlation
coefficient in the x+

2 � 20 and x+
2 ≈ 50–80 regions is the consequence of the directional

preference of the plus-mode eigenfunctions to the lateral motion at the maximum
lateral component energy location, x+

2 ≈ 30, and that of the minus-mode eigenfunc-
tions to the streamwise motion at the maximum streamwise component energy loca-
tion, x+

2 = 13.

3.3. Empirical eigenvalues and eigenfunctions

Let us now consider the eigenvalues and eigenfunctions of the PODS. In contrast to
§ 3.2, we will consider the eigenvalues and eigenfunctions in the full channel domain,
i.e. we set Ω2 ∈ [−1, 1] in (3.6), (3.7) and the inner products. These eigenfunctions will
be used later as a basis for our full channel dynamical models.

Table 1 shows the percentage of energy content across the channel from different
numbers of POD and PODS families. The energies are summed over all Fourier
modes for each POD and PODS family. The first families of POD and PODS modes
capture about the same energy content (30 % and 32 %, respectively). For the higher-
order families, the PODS modes require approximately two-third of the number of
POD eigenfunction families to capture the same amount of energy content.

Table 2 shows the eigenvalues of the first 10 dominant PODS modes in the full
channel domain (recalling that the symmetries in § 2.1 force certain degeneracies on
the eigenfuntions). The most energetic mode residing in (l, m, n) = (± 1, ± 2, 1), where
l and m denote harmonics of the fundamental wavenumber, carries only 4 %, and
the first 10 modes contain only 28 %, of the total energy content across the channel,
in contrast to the localized PODS modes (see Juttijudata 2003) that carry up to 8 %
of the energy content across the localized domain (x+

2 � 84) in the first eigenmode,
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Figure 5. Empirical eigenfunctions in the wall-to-wall domain. (a) (1,2,1), (b) (0,1,1) (integer
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2 ); dotted,
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3 ); circles, Im(φ−
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and carry up to 50 % of the energy content in the first 10 eigenmodes. The PODS
eigenfunctions of the full channel domain clearly converge more slowly than those
of the localized domain. We may estimate the length scale of the coherent structures
from the eigenvalues. The most energetic mode (including its degeneracies) resides in
(± 1, ± 2, 1). This suggests that the coherent structures reconstructed from the PODS
expansion are approximately 1650 ν/uτ long in the streamwise direction and 275
ν/uτ wide in the spanwise direction. This is comparable to the length scales found in
physical structures of turbulent boundary layers.

Figure 5 shows the profile of the PODS eigenfunctions in the full channel domain
of (1,2,1) and (0,1,1) (integer harmonic) Fourier–PODS modes as a function of the
wall distance (from the lower wall to the centreline of the channel). Notice that the
eigenfunctions satisfy the no-slip condition at the wall, φ

±
i (x2/δ = −1) = 0, and the

slope of φ+
2 at the wall satisfies both the no-slip and the incompressibility condition,

dφ+
2 /dx2(x2/δ = −1) = 0. The reconstruction of eigenfunctions in physical space (see

Juttijudata 2003) also exhibits the structures of streaks and streamwise vortices.

4. Derivation of dynamical model
4.1. Equations for coherent structures

We only outline the derivation of the equations for coherent structures. The detailed
derivation can be found in Holmes et al. (1996). We use the conventional tensor
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notation, with summation implied on repeated indices (Einstein notation). The
dynamical equations of the mean and fluctuating velocity (including the contribution
from both coherent and incoherent motions at this point) may be derived by
introducing the Reynolds decomposition, vi = 〈vi〉 + ui, π = 〈π〉 + p, into the Navier–
Stokes equations. We further substitute the decomposition ui = ui< + ui>, where ui<

and ui> denote resolved and unresolved velocity (representing the coherent and
incoherent motions), into the fluctuating velocity equations and project them onto the
subspace of the resolved modes. By assuming that the operations of the projection and
differentiation commute, we obtain the dynamical equations of coherent structures:

∂ui<

∂t
= Ni< + νui,jj< − p,i<, (4.1)

where

Ni< = − 1
2
{u2<U1,2 + (uj<U1),j }<δi1 − 1

2
{ui,1<U1 + (ui<U1),1}<

− 1
2
{(ui,j<uj< + (ui<uj<),j ) − (〈u1,j<uj<〉 + 〈u1<u2<〉,2)δi1}< − (τij,j>)<,

and

τij,j> = 1
2
{u2>U1,2 + (uj>U1),j }δi1 + 1

2
{ui,1>U1 + (ui>U1),1}

+ 1
2
{(ui,j<uj> + ui,j>uj< + ui,j>uj> + (ui<uj> + ui>uj< + ui>uj>),j )

− (〈u1,j<uj> + u1,j>uj< + u1,j>uj>〉 + 〈u1<u2> + u1>u2< + u1>u2>〉,2)δi1}. (4.2)

Substituting the decomposition into the mean velocity equations we obtain

∂U1

∂t
= − 1

2
(〈u1,j<uj<〉 + 〈u1<u2<〉,2) − 〈τ12>〉,2 + νU1,22 − P,1. (4.3)

In order to close the dynamical equations, we need to specify τij> as a function of
the resolved motion, which will be discussed in § 4.3.

Note that the nonlinear terms in (4.1) and (4.3) are in skew-symmetric form. The
angle bracket denotes the spatial average defined by

〈f 〉 =
1

L1L3

∫ L1

0

∫ L3

0

f (x, t) dx3 dx1.

We denote 〈vi〉 = Ui , and 〈π〉 = P . By definition, 〈f 〉 is a function of x2 alone.
The continuity equation of the fluctuating velocity is given by

ui<,i = 0. (4.4)

The periodic and no-slip boundary condition of (4.1) are

ui<(x1, x2, x3 + L3, t) = ui<(x1 + L1, x2, x3, t) = ui<(x1, x2, x3, t),

ui<(x1, ±1, x3, t) = 0,

respectively, and the no-slip boundary condition of (4.3) is

Ui(±1, t) = 0.

We impose a periodic boundary condition on the fluctuating velocity field by expand-
ing the fluctuating velocity field in the Fourier modes (the empirical eigenfunctions
in homogeneous directions). The no-slip conditions at both walls are automatically
satisfied by the eigenfunctions. For the mean velocity equations, the no-slip conditions
must be imposed explicitly.
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The Fourier-transformed equations of coherent structures (4.1) and divergence-free
conditions (4.4), respectively, are

∂ûik<

∂t
= N̂ ik<

+ ν

(
−|k|2 +

∂2

∂x2
2

)
ûik<

− Ωip̂k<, (4.5)

ik1û1k<
+

∂

∂x2

û2k<
+ ik3û3k<

=0, (4.6)

where N̂ ik<
is the Fourier transform of the nonlinear terms. The spatial derivative

operator Ωi is defined as

Ωip̂k< =


ik1p̂k< if i = 1,

∂

∂x2

p̂k< if i = 2,

ik3p̂k< if i = 3.

(4.7)

Let us apply Squire’s transformation to the dynamical equations. Recalling that
u‖ and u⊥ are the horizontal Fourier-transformed velocity components parallel and
perpendicular to the wavenumber-vector, and v is that normal to the wall, the
equations in Squire’s coordinate system are

∂u
‖
<

∂t
= N

‖
< + ν

(
−|k|2 +

∂2

∂x2
2

)
u

‖
< − i|k|p<,

∂v<

∂t
= Nv

< + ν

(
−|k|2 +

∂2

∂x2
2

)
v< − ∂

∂x2

p<,

∂u⊥
<

∂t
= N⊥

< + ν

(
−|k|2 +

∂2

∂x2
2

)
u⊥

<,


(4.8)

and

i|k|u‖
< +

∂

∂x2

v< = 0, (4.9)

where N
‖
< and N⊥

< are the Fourier transforms of the components of the nonlinear
terms in (4.5) that are parallel and perpendicular to the wavenumber vector, and Nv

<

is that which is normal to the wall. For the sake of brevity, we have dropped the hats
and the subscript k from (4.8) and (4.9). Notice that Squire’s transformation removes
the pressure term from u⊥.

4.2. Galerkin projection

The procedure of Galerkin projection of (4.8) onto the PODS basis functions is
similar to that of (4.5) onto the POD basis functions except this time the projection
has to be performed twice:


∂u

‖
<

∂t

∂v<

∂t

0


,


φ

(n)+

1

φ
(n)+

2

0




+

=




N
‖
< + . . .

Nv
< + . . .

0

 ,


φ

(n)+

1

φ
(n)+

2

0




+

,
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for plus-modes, and


0

0

∂u⊥
<

∂t

 ,


0

0

φ
(n)−

3




−

=


0

0

N⊥
< + . . .

 ,


0

0

φ
(n)−

3


−

,

for minus-modes. The final dynamical model in the PODS subspace is

da+(n)

dt
= N+(n) + νL+

npa+(n) + d+(n), (4.10)

da−(n)

dt
= N−(n) + νL−

npa−(n). (4.11)

The nonlinear terms are given by

N+(n) =

∫ X2

−1

(
N‖

<φ
+(n)∗
1 + Nv

<φ
+(n)∗
2

)
dx2,

N−(n) =

∫ X2

−1

N⊥
< φ

−(n)∗
1 dx2,

and the linear model coefficients are given by

L+
np = −|k|2δnp −

∫ X2

−1

(
dφ

+(p)
1

dx2

dφ
+(n)∗
1

dx2

+
dφ

+(p)
2

dx2

dφ
+(n)∗
2

dx2

)
dx2

+

[
dφ

+(p)
1

dx2

(X2)φ
+(n)∗
1 (X2) +

dφ
+(p)
2

dx2

(X2)φ
+(n)∗
2 (X2)

]
,

L−
np = −|k|2δnp −

∫ X2

−1

dφ
−(p)
3

dx2

dφ
−(n)∗
3

dx2

dx2 +

[
dφ

−(p)
3

dx2

(X2)φ
−(n)∗
3 (X2)

]
.

Note that instead of substituting the velocity expansion in the nonlinear terms and
computing the nonlinear coefficients like Aubry et al. (1988), we compute the product
of the nonlinear terms in the physical space, transform the nonlinear terms to the
Fourier space and project each Fourier coefficient of nonlinear terms onto the PODS
subspace. The main advantage of this approach is that we do not have to derive the
nonlinear model coefficients again when we change the form of the nonlinear terms
or the closure model of the unresolved stresses.

The pressure source terms are defined as

d+(n) =

∫ X2

−1

(
ikp<φ

+(n)
1 +

dp<

dx2

φ
+(n)
2

)
dx2.

We may apply the divergence theorem and use the incompressibility condition to
rearrange the pressure source terms as

d (n)+ = −p<(X2)φ
+(n)∗
2 (X2).

In the full channel, X2 = 1, the eigenfunctions satisfy the no-slip conditions; therefore
the contributions from the boundary terms in the square brackets [·] of the linear
model coefficients and from the pressure source terms are exactly zero. Furthermore,
the well-posedness of the model is ensured. In contrast, in the localized domain
model of Aubry et al. (1988), neither of these terms is zero, nor is the well-posedness
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of the model ensured as pointed out in Zhou & Sirovich (1992). The issue of the
well-posedness of the localized model results from replacing three velocity boundary
condition in the Navier–Stokes equations with a single pressure term in the model.
As an alternative, Zhou & Sirovich (1992) propose constructing the localized low-
dimensional model by using artificially localized POD eigenfunctions obtained from
a linear combination of the full channel POD eigenfunctions. Alternatively, Gibson
(2002) imposes the velocity boundary condition onto the localized domain model via
the tau-method projection (see Canuto et al. 1988). Unfortunately, his model suffers
from instability. The reader is directed to Zhou & Sirovich (1992), Berkooz et al.
(1994), Sirovich & Zhou (1994), Holmes et al. (1996) and Gibson (2002) for further
discussion on the well-posedness and the boundary condition of localized models. In
order to avoid an unreliable ad hoc model of the pressure source term and the issue
of the well-posedness of the model, we will consider the full channel domain in this
study. We now set Ω2 ∈ [−1, 1] in (3.6), (3.7), and the inner products and X2 = 1
in the model coefficients in (4.10) and (4.11), in order to obtain full channel PODS
eigenfunctions and dynamical models.

4.3. Interaction with unresolved modes

In the classical view of turbulence, turbulence energy is primarily produced and
transported by large-scale motions. Energy cascades from large-scales to smaller
scales by vortex stretching in the nonlinear terms, and eventually dissipates in the
smallest (Kolmogorov) scales through a viscous mechanism (see Tennekes & Lumley
1972). Turbulence is an inviscid, inertial phenomenon that is controlled by the large-
scale motions (represented by the low-order eigenfunctions), and is uninfluenced by
the exact nature of the viscous mechanism (represented by high-order eigenfunctions
which are usually truncated in low-dimensional models). Clearly the exact nature of
the unresolved stress model is not important as long as it prevents an artificial energy
accumulation in the unresolved-scale motions resulting from the interruption of the
natural energy cascade process. Aubry et al. (1988) model the unresolved motion
with a Heisenberg spectral transfer model (Heisenberg 1948) or equivalently an eddy-
viscosity model or Smagorinsky SGS model in LES (Smagorinsky 1963). Rempfer
(1993) and Ma & Kardianakis (2002) model the unresolved stress by more complex,
independent eddy-viscosity models for each POD mode. Both models successfully
reproduce the qualitative pictures of turbulence events. The constant eddy-viscosity
model is also used in the quantitative simulation of Omurtag & Sirovich (1999) and
Gibson (2002). Gibson (2002) also studies the performance of eddy-viscosity models
in the quantitative model and suggests a deficiency of the constant eddy-viscosity
models. From our point of view, in order to obtain good quantitative models, the
unresolved stress model should account for the effect of the unresolved motion in
turbulence production, transport and pressure redistribution in the coherent motion
equations, as well as in the Reynolds shear stress in the mean motion equation. In
our study, we adopt the dynamic Smagorinsky and one-coefficient mixed model from
LES (e.g. Sarghini et al. 1999) for the unresolved stress model. Note that the filtering
operator in the dynamic procedure is used in the horizontal directions only.

The plane-averaged formulation of the dynamic Smagorinsky model is

τij> − τkk>

3
δij = − 2Cev|S<|�2Sij<, Cev(x2, t) = − 1

2

〈LijMij 〉
〈MijMij 〉 , (4.12)



PODS for dynamical models of channel turbulence 213

and the plane-averaged formulation of the dynamic one-coefficient mixed model is

τij> = Aij − 2Cev|S<|�2Sij<, Cev(x2, t) = −1

2

〈LijMij 〉 − 〈NijMij 〉
〈MijMij 〉 , (4.13)

where

Aij = uiuj − uiuj ,

Lij = ũiuj − ũi ũj ,

Mij = �
2
[(�̃/�)2|S̃|S̃ij − |̃S|Sij ],

Nij = Bij − Ãij ,

and

Bij =
˜̃
uiũj − ˜̃

ui

˜̃
uj .

The top-hat filter is used for all explicit filtering operations required for the evalua-
tion of the scale-similar model and as a test filter. The overbar and tilde denote the
filtering operation with filter widths in the streamwise and spanwise directions of �

and �̃, respectively, where �̃/� =
√

6 as suggested by Lund (1998).
We may expect that the unresolved stresses from the Smagorinsky (or the eddy-

viscosity type) model provides enough additional energy dissipation to the truncated
systems but are poorly correlated to the exact unresolved stresses from the full
system, if we assume the behaviour of the unresolved stresses in the dynamical system
is similar to that of the SGS in LES. The introduction of a scale-similar part in the
mixed model should improve the correlation of the unresolved stresses from the model
and that from the full system (see Bardina, Ferziger & Reynolds 1983). Note that
because we assume the scale-similarity and perform a double filtering operation in the
dynamic procedure only in the horizontal directions, we expect the unresolved stress
models may fail to accurately account for the interaction with unresolved motion in
the wall-normal direction.

5. Numerical simulations
The dynamical model is integrated in time using a Fourier–PODS pseudo-spectral

method. The nonlinear term is cast in skew-symmetric form and computed without
de-aliasing. The empirical eigenfunctions are projected on the Chebyshev collocation
points, x

j

2/δ = cos(π/(N2 − 1) × (j − 1)), where j = 1, . . . , N2, and represented using
cubic spline interpolation. The second-order derivatives of the function are prescribed
at both boundary points, x2/δ = ± 1, in order to calculate the spline coefficients.
The derivatives are estimated using second-order one-sided finite differences. The
differentiation and integration in the wall-normal direction are therefore based on
cubic spline interpolation. Here we choose to represent the basis functions using cubic
spline interpolation instead of Chebyshev polynomials, which are more accurate,
because the cubic spline interpolation offers a great flexibility to represent the basis
functions in different domain sizes (e.g. the full channel domain (−1 � x2 � 1) and
localized domain considered earlier (0 � x+

2 � 84)). At this point we are more interested
in the convergence rate of the basis functions and their dynamical models than in the
numerical methods and efficiency. In our simulations, we choose N2 = 65. This number
equals the resolution of a well-resolved LES and ensures that all the eigenfunctions
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Basis function Truncation τ>ij Reτ

P6 POD (±16, ±24, 4) e = 0.0 212
P8 POD (±16, ±24, 6) e = 0.0 214
S4 PODS (±16, ±24, 4) e = 0.0 179
SC PODS (±16, ±24, 4) e = 0.8 147
DS PODS (±16, ±24, 4) Smagorinsky 174
DM PODS (±16, ±24, 4) mixed model 172
LES – (32, 65, 48) mixed model 172
CDNS – (32, 65, 48) – 180

Table 3. Simulation parameters and frictional Reynolds number: the basis function (integer
harmonic) Fourier–PODS truncation ((N1, N2, N3) in LES and CDNS), unresolved stress
model and friction Reynolds number.

in our simulations are well-resolved on the grids as seen in figure 5. The time-
advancement is performed by a semi-implicit low-storage third-order Runge–Kutta
time-stepping scheme (Spalart et al. 1991). We constantly change the size of the time
step in order to achieve the maximum allowable CFL, 0.8 × CFLmax = 0.8 ×

√
2.8.

Eventually the system of linear equations in each Fourier mode is solved by Gauss
elimination with scaling and partial pivoting. A fixed volume flow rate is maintained
throughout the simulation. Because the mean mode representation is excluded from
the PODS basis functions, the mean velocity equation is discretized by a second-order
central finite difference scheme in the wall-normal direction and advanced in time
using the same Runge–Kutta time-stepping scheme. The computational parameters
in the dynamical model are the same as in the LES database: the Reynolds number
based on laminar centreline velocity, Uc, and half-channel width, δ, of 4000, equivalent
to 172 based on computed friction velocity, uτ ; the computational domain size norma-
lized by the half-channel width of (L1, L2, L3) = (3π, 2, π), equivalent to (L+

1 , L+
2 ,

L+
3 ) = (1640, 348, 547); (N1, N2, N3) = (32, 65, 48), equivalent to (�x+

1 , �x+
2 , �x+

3 ) ≈
(50, 0.2, 11) based on the LES friction velocity.

A set of eight simulations will be compared in § 6. Three of the simulations are
dynamical models based on 6 and 8 POD families (P6 and P8) and 4 PODS families
(S4) with no unresolved stress model. We choose to compare S4 to P6 and P8.
According to table 1, S4 and P6 contain approximately the same amount of energy,
78 % of total energy content, which suggests the convergence rate of S4 and P6, in
an energy sense, are comparable. The comparison of S4 and P6 should therefore be
a good indication of the relative performance of PODS and POD models for a given
energy content. In terms of computational resource, the number of unknowns in the
PODS expansion, a(n)+ and a(n)−

, is twice of that in the POD expansion, a(n). Therefore
the comparison between S4 and P8 containing 83 % of total energy content is quite
reasonable in terms of computational resource. An additional three computations
we present were done as dynamical simulations based on 4 PODS families using a
constant eddy-viscosity (SC), dynamic Smagorinsky (DS) and one-coefficient mixed
model (DM). The last two simulations are LES with a dynamic one-coefficient mixed
SGS model (LES) and a coarse-grid direct numerical simulation (CDNS). The main
parameters for all the simulations are shown in table 3: the truncation of PODS (and
POD) modes, the unresolved stress model, and the friction Reynolds number.

The statistically stationary velocity field from the one-coefficient mixed SGS model
LES is projected onto PODS (or POD) subspace and integrated in time until the
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Figure 6. Mean velocity profiles from simulations: solid, S4 (4-family PODS); dotted, P6
(6-family POD); dash-dot, P8 (8-family POD); points, CDNS (coarse-grid DNS); circles, LES;
dashed, law of wall.

flow reaches the statistically stationary state defined by a linear profile of total shear
stress. The flow is further integrated in time to obtain a running time average of the
statistics. The statistical calculations are based on 500 independent samples for P6,
P8, S4, SC and CDNS, and 1500 independent samples for DS, DM and LES. The
number of samples is increased by averaging over horizontal (homogeneous) planes.

6. Results
6.1. Comparison to POD basis functions

In order to obtain reasonably accurate statistics, we retain up to 4 PODS families (S4).
We also integrated the 6- and 8-family PODS models (not included here) and found
no qualitative difference in statistics and velocity structures between these models and
the 4-family PODS model. The difference between model statistics and LES statistics
(with SGS contribution) reduces monotonically as the number of families increases.
In order to make a fair comparison to POD models, we will consider 6 and 8 POD
family models (P6 and P8). For the sake of comparison, we also plot the statistics of
the coarse-grid DNS (CDNS).

Figure 6 shows the mean velocity profiles from different models as a function of
the wall distance. Dashed lines in the figure represent the mean velocity profile from
the linear law of the wall and the log law. The most accurate prediction of the mean
velocity profile among S4, P6 and P8 is obtained with S4. The intercept of the log layer
from S4 is very close to that from LES and the law-of-the-wall prediction, whereas
that from P6 and P8 are too low, consistent with the higher friction Reynolds numbers
as shown in table 3. The accurate prediction of mean velocity from S4 is a consequence
of an accurate prediction of Reynolds shear stress as can be seen in figure 7(c).

Figure 7(a) shows the streamwise turbulent intensity reproduced from different
models as a function of the wall distance. Note that the intensity from LES includes
both the resolved stresses and SGS. P6, P8 and S4 produce a qualitatively close
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Figure 7. Statistics from simulations: (a) streamwise turbulent intensity, (b) wall-normal
turbulent intensity, (c) Reynolds shear stress and (d) correlation coefficient of streamwise and
wall-normal velocity: solid, S4 (4-family PODS); dotted, P6 (6-family POD); dash-dot, P8
(8-family POD); points, CDNS (coarse-grid DNS); circles, LES.

prediction of the distribution of the intensity, especially below x+
2 � 100, and capture

the location of maximum intensity fairly well. Nevertheless, only S4 could accurately
reproduce the maximum intensity. We may obtain an accurate maximum intensity
from P6 and P8, if we renormalize their intensities and wall distances by the LES fric-
tion velocity. This suggests that the shape of streamwise turbulent intensity from POD
and PODS models is predominantly controlled by the characteristics of the empirical
data used to generate POD and PODS eigenfunctions whereas the level of maximum
intensity is controlled by the turbulence production mechanism (depending on the
accuracy of the mean velocity profile and Reynolds shear stress prediction). The bias
of streamwise turbulent intensity prediction toward the characteristics of the empirical
data is again evident in a better prediction from S4 than that from CDNS in the wall
region, x+

2 � 40, where both models produce relatively accurate production levels.
Figure 7(b) shows the prediction of the wall-normal turbulent intensity from

different models. It is inconclusive whether the intensity profile from S4 is better
than that from P6 and P8. S4 over-predicts the maximum intensity and pushes the
location of maximum intensity further away from the wall by approximately 10 wall
units. Since the actual peak and its location of wall-normal intensity is controlled
by the low-order resolved eigenmodes, the shifting of the peak and its location in
S4 suggest an anomalous activity of higher-order resolved eigenmodes that probably
results from energy accumulation in the higher-order resolved modes. Nevertheless,
the intensity profile from S4 is much smoother than that from P6 and P8 which, in
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Figure 8. Mean velocity profiles from simulations: solid, S4 (no unresolved stress model);
dotted, SC (constant eddy-viscosity); dash-dot, DS (dynamic Smagorinsky model); points, DM
(dynamic mixed model); circles, LES; dashed, law of wall.

turn, improves the Reynolds shear stress profile in figure 7(c). We may draw the same
conclusion from the spanwise turbulent intensity reconstruction (see Juttijudata 2003).

Figure 7(c) shows the reproduction of the Reynolds shear stress from different
models as a function of the wall distance. Evidently, S4 can reproduce the smooth
profile of the Reynolds shear stress more accurately than either P6 or P8. The
correlation coefficients of the streamwise and wall-normal velocity of different models
are shown in figure 7(d). Overall, the prediction from S4 is much better than that
from P6 and P8. However, S4 considerably under-predicts the correlation coefficient
by 25 % in the region 30 � x+

2 � 100.

6.2. Effect of unresolved stress models

We consider three different unresolved stress models, namely constant eddy-viscosity
(SC), dynamic Smagorinsky (DS) and dynamic one-coefficient mixed (DM). In SC,
we simply replace ν in (4.10) and (4.11) by (1 + e)ν. Notice that the mean velocity
equation is unchanged, meaning that there is no, or only a weak, interaction with the
unresolved modes in the equation and in the Reynolds shear stress. The choice of
e = 0.8 in SC is not the most optimal value; however the model predicts the best wall-
normal turbulent intensity among different values of e in our tested simulations. Note
that the choice of e = 0 produces the best streamwise turbulent intensity among other
choices of e. All statistical reconstructions include the unresolved stress contribution
whenever possible:〈
τ

S4/SC
ij

〉
= 〈ui<uj<〉;

〈
τDS
ij

〉
= 〈ui<uj<〉 +

〈
τDS
12>

〉
δi1δj2;

〈
τDM
ij

〉
= 〈ui<uj<〉 +

〈
τDM
ij>

〉
.

Figure 8 shows the mean velocity profile from different models and the mean
velocity prediction from the law of wall in dashed lines as a function of the wall
distance. Every model except SC predicts an accurate mean velocity profile with a
good intercept of the log layer, consistent with an accurate prediction of the friction
Reynolds number as shown in table 3. Among these models, DM yields the best
prediction. The high intercept of the log law in SC suggests a low friction Reynolds
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Figure 9. Statistics from simulations: (a) streamwise turbulent intensity, (b) wall-normal tur-
bulent intensity, (c) Reynolds shear stress and (d) correlation coefficient of streamwise and wall-
normal velocity: solid, S4 (no unresolved stress model); dotted, SC (constant eddy-viscosity);
dash-dot, DS (dynamic Smagorinsky model); points, DM (dynamic mixed model); circles,
LES.

number. Again, the accuracy of Reynolds shear stress prediction plays an important
role in the accuracy of the mean velocity prediction.

Figure 9(a) shows the streamwise turbulent intensity from different models. All the
models except SC produce fairly accurate intensity profiles. This suggests the turbu-
lence production mechanism and the distribution of streamwise turbulent intensity
are strongly controlled by the shape of PODS eigenfunctions regardless of the choice
of unresolved stress models, at least for the 4 PODS family model case. Not only
does SC fail to predict the peak of streamwise turbulent intensity, but SC also fails
to capture the qualitative shape of the intensity (relatively low intensity in x+

2 � 40
and x+

2 � 100 regions). The quantitative, dynamical models require more sophisticated
unresolved stress models than a uniform eddy-viscosity model (SC).

Figure 9(b) shows the wall-normal turbulent intensity. In this case, SC gives the best
estimate of the intensity. However, we have to sacrifice some accuracy of the mean
velocity and streamwise turbulent intensity profile. The introduction of the unresolved
stress model into the dynamical system (DS, DM) evidently improves the intensity
prediction from S4, but still fails to completely remove the anomalous activity in
the higher-order resolved eigenmodes in S4. We suspect that the interaction with
unresolved modes in the wall-normal direction, which is not accounted for by the
dynamic procedure (§ 4.3), plays an important role in the actual unresolved stresses.
We may draw the same conclusion for the spanwise turbulent intensity (see Juttijudata
2003).
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Figure 10. Contribution from unresolved stresses: (a) component turbulent intensities; solid,
total intensities (DM-dynamic mixed model); dashdot, resolved intensities (DM-dynamic mixed
model), (b) Reynolds shear stress: solid, total RS (DM-dynamic mixed model); dash-dot,
resolved RS (DM-dynamic mixed model); circles, total RS (DS-dynamic Smagorinsky model);
points, resolved RS (DS-dynamic Smagorinsky model).

Figure 9(c) shows the reconstucted Reynolds shear stress from different models.
The Reynolds shear stress predictions from both DS and DM slightly are improved
from the prediction from S4. The prediction from SC fails to produce an accurate
Reynolds shear stress profile, re-emphasizing the insufficiency of the uniform eddy-
viscosity model. Figure 9(d) shows the correlation coefficients as a function of the wall
distance. On average, none of the unresolved stress models improves the accuracy
of the coefficient prediction compared to the S4 prediction. Since the quality of the
prediction of wall-normal turbulent intensity prediction from DS and DM is slightly
deteriorated compared to that from S4, DS and DM slightly over-predict the maxi-
mum value of the coefficient.

Before closing this section, let us consider the contribution from the unresolved
stresses to the total stresses. Figure 10(a) shows the resolved and total (resolved and
unresolved) turbulent intensities from DM model. The contribution of the unresolved
stress is fairly small compared to the total intensities (less than 10 %). Figure 10(b)
shows the resolved and total Reynolds shear stress from DS and DM. The contribution
of the unresolved stress in DS is fairly small (less than 10 %) whereas that in DM is
quite considerable (up to 20 %). However, the total Reynolds shear stresses from both
models are almost the same and insensitive to the unresolved stress models. In fact,
they are not much different from the S4 prediction, which has no unresolved stress
model. The interaction of resolved, unresolved and mean motion is quite complicated
and very sensitive to the details of the unresolved stress model. Further understanding
of the nonlinear energy transfer is required. We will leave this issue for future study.

6.3. Statistical structures

In this section, we will examine the structures of turbulent motion from numerical
simulations. We will present the structures from DM only. The other models produce
qualitatively similar structures. Let us consider the two-point correlations in the
spanwise direcion at x+

2 = 13. The mean streak spacing may be estimated by doubling
the separation of the minimum correlation of the streamwise velocity, R11, shown in
figure 11. With �x+

3 ≈ 50 from the figure, the mean streak spacing is approximately
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Figure 11. Spanwise two-point correlations at x+
2 = 13: solid, R11; dashed, R22;

dot-dash, R33.

100 ν/uτ , consistent with the visual observation in Robinson (1991). The diameter
of the streamwise vortices may be approximated by the separation of the minimum
correlation of the wall-normal velocity, R22, shown in figure 11. The estimate of R22

suggests a diameter of the vortices of about 40 ν/uτ , also consistent with the observa-
tion in Robinson (1991). We find the separation of the minimum correlation of
spanwise velocity, R33, shown in the same figure, to be about 50–60 ν/uτ . This could
suggest the presence of counter-rotating vortex pairs in the wall region. However as we
further move toward the centre of the channel, we no longer find the minimum point
of the correlation above x+

2 > 30 (not shown). The minimum correlation coefficient
we observed at x+

2 = 13 might be due to the impingement or splatting effect caused
by a single vortex as suggested by Moser & Moin (1984).

Figure 12 shows the instantaneous velocity reconstruction at x+
2 = 13. Part (a) of the

figure shows the fluctuating streamwise velocity contours (dashed line represents low
speed; solid line represents high speed), and part (b) shows the ejections (solid line)
and sweeps (dashed line). Low-speed streaks are relatively long and thin compared
to high-speed streaks. From visual inspection, low-speed streak spacing is around
100 ν/uτ . We also find a high degree of coherence between low-speed streaks and
ejections as well as high-speed streaks and sweeps: low-speed (high-speed) streaks
more or less sit on top of ejections (sweeps).

The fluctuating velocity reconstruction at the x+
1 = 0 cross-section of the same case is

reproduced in figure 13. Part (a) of the figure shows the streamwise velocity contours,
and part (b) shows the velocity vectors of the spanwise and wall-normal components.
They show alternating regions of low-speed and high-speed streaks especially above
and below x+

2 = 100, −100. There is also evidence of vortical structures. A strong
correlation of low-speed (high-speed) regions and ejections (sweeps) also appears e.g.
at x+

2 = −125 (−90) and x+
3 = 275 (220). Figure 14 shows the fluctuating velocity field

of the steamwise-invariant modes in figure 13. The streamwise velocity contours and
velocity vectors are much more coherent than in figure 13. The presence of streaks
and vortical structures is also much more clear in this figure.
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Figure 12. The instantaneous velocity reconstruction from DM projected on x+
2 = 13 plane.

(a) Contours of streamwise velocity: solid, high-speed; dashed, low-speed; (b) contours of
ejections and sweeps; solid, ejections; dashed, sweeps.
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Figure 13. The instantaneous velocity reconstruction from DM projected on x+
1 = 0 plane.

(a) Contours of streamwise velocity: solid, high-speed; dashed, low-speed, (b) velocity vectors
of spanwise and wall-normal velocity.

7. Conclusion
Our main objective in this study is to develop new POD basis functions and their

dynamical models to achieve better accuracy. Re-examination of the POD statistical
reconstruction and its structures suggest that the resulting coherent structures are
too well correlated due to the relatively slow convergence rate of the wall-normal
velocity component and the overproduction of the Reynolds shear stress in low-
order POD modes. A close examination reveals that the too-coherent structures of
the POD expansion have resulted from the directional preference of the low-order
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Figure 14. The instantaneous velocity reconstruction from streamwise-invariant modes of
DM projected on x+

1 = 0 plane. (a) Contours of streamwise velocity: solid, high-speed; dashed,
low-speed, (b) velocity vectors of spanwise and wall-normal velocity.

eigenfunctions toward the most energetic data points, which are the streamwise motion
at the maximum production (x+

2 = 13). Better basis function can be obtained by means
of the POD in Squire’s coordinate system (PODS). The Squire transformation can
approximately confine the streaks to the minus-modes and streamwise vortices to the
plus-modes; hence it approximately isolates the more energetic streamwise component
from the lateral components. The statistics and structures of the PODS reconstruction
improve significantly that of the POD reconstruction. The PODS eigenvalues of the
full channel domain suggest that the length scales of the coherent structures are
approximately 1650 ν/uτ in the streamwise direction and 275 ν/uτ in the spanwise
direction, which are comparable to the length scales found in physical structures of
turbulent boundary layers.

We have developed dynamical models based on PODS. Clearly, the PODS-based
model (S4) without any unresolved stress model performs much better than the POD-
based models (P6 and P8). It performs particularly well in capturing mean velocity,
streamwise turbulent intensity and Reynolds shear stress, and compares favourably
to POD models that have the same energy content (P6), or require comparable
computational effort (P8). The effect of unresolved stress models on the dynamical
model is also considered. It is evident that a constant eddy-viscosity model (SC) is not
sufficient to model the interaction with the unresolved motion in the quantitatively
accurate models. In general, the dynamic Smagorinsky (DS) and one-coefficient mixed
unresolved stress models (DM) produce comparably accurate statistics and are only
slightly better than the dynamical model without any unresolved stress model. The
comparison of the total stresses to the resolved stresses in DS and DM suggests that
the resolved stresses strongly depend on the unresolved model but the total stresses
are not much different from one another, including the model without any unresolved
stress model. The reconstruction of the spatial structures of PODS simulation suggests
the presence of streaks, streamwise vortices and the ejection/sweep events which
resemble the spatial structures in turbulent boundary layers.

It is also important to consider the increased computational resources required by
the PODS models. Table 4 shows the CPU time per δ/Uc normalized by the CPU
time of the S4 model. The numbers reported in the table can only suggest the
qualitative trends of each model because they strongly depend on the implementation
and machine. Even though P6 saves 10 % compared to S4, S4 produces a much more
accurate result than P6. The costs of solving S4, DS and DM are not much different.
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Case CPU Time

P6 0.91
P8 1.09
S4 1.00
SC 0.72
DS 1.04
DM 0.98
LES 1.14
CDNS 0.46

Table 4. Relative CPU time per δ/Uc .

P8 and LES require about 10–15 % more computational time than S4, DS and DM.
In terms of the solution accuracy and computational cost, LES still does have advan-
tages over other models. The relatively large CPU time required by P8 is due to a
stronger velocity gradient at the wall which decreases the maximum allowable time
step, and the relatively small CPU time required by SC is due to a milder velocity
gradient at the wall which increases the maximum allowable time step.

Better understanding of the dynamics of coherent structures from a PODS
viewpoint, the nonlinear interaction of PODS models, and the development of new
closure models and boundary condition models for the localized domain models are
recommended for future study.
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foundations, and corporate partners. The computational time at the Cornell Theory
Center was also partially supported by the National Science Foundation, Grant
No. CTS-0106064. V. J. gratefully acknowledged the financial support from the Royal
Thai Government.

REFERENCES

Aubry, N., Holmes, P., Lumley, J. L. & Stone, E. 1988 The dynamics of coherent structures in the
wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173.

Bakewell, H. P. & Lumley, J. L. 1967 Viscous sublayer and adjacent wall region in turbulent pipe
flow. Phys. Fluids 10, 1880–1889.

Ball, K. S., Sirovich, L. & Keefe, L. R. 1991 Dynamicl eigenfunction decomposition of turbulent
channel flow. Intl J. Numer. Meth. Fluids 12, 585–604.

Bardina, J., Ferziger, J. & Reynolds, W. 1983 Improved turbulence models based on large
eddy simulation of homogeneous, incompressible, turbulent flows. Tech. Rep. TF-19. Thermo-
sciences Division, Mechanical Engineering Department, Stanford University.

Berkooz, G., Holmes, P. & Lumley, J. L. 1991 Intermittent dynamics in simple models of the wall
layer. J. Fluid Mech. 230, 75–95.

Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the
analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575.

Berkooz, G., Holmes, P., Lumley, J. L., Aubry, N. & Stone, E. 1994 Observations regarding
“Coherence and chaos in a model of turbulent boundary layer” by X. Zhou and L. Sirovich.
Phys. Fluids 6, 1574–1578.

Canuto, C., Hussaini, M. Y., Quateroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics .
Springer.

Corino, E. R. & Brodkey, R. S. 1969 A visual investigation of the wall region in turbulent flow.
J. Fluid Mech. 37, 1–30.



224 V. Juttijudata, J. L. Lumley and D. Rempfer

Dean, R. B. 1978 Reynolds number dependence on skin friction and other bulk flow variables in
two-dimensional rectangular duct flow. Trans. ASME I: J. Fluids Engng 100, 215–223.

Gibson, J. F. 2002 Dynamical systems models of wall-bounded shear-flow turbulence. PhD thesis,
Cornell University.

Heisenberg, W. 1948 On the theory of statistical and isotropic turbulence. Proc. R. Soc. Lond. A
195, 402–406.

Herzog, S. 1986 The large scale structures in the near-wall region of turbulent pipe flow. PhD
thesis, Cornell University.

Holmes, P., Lumley, J. L. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems
and Symmetry . Cambridge University Press.

Juttijudata, V. 2003 Proper orthogonal decomposition in Squire’s coordinate system and its low-
dimensional model of channel turbulence. PhD thesis, Cornell University.

Juttijudata, V., Rempfer, D. & Lumley, J. L. 2001 Development of near-wall SGS model based
on a localized low–dimensional approach. Bull. APS 46, No. 9.

Kim, J., Moin, P. & Moser, R. D. 1987 Turbulence statistics in fully-developed channel flow at low
Reynolds number. J. Fluid Mech. 177, 133–166.

Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent
boundary layers. J. Fluid Mech. 30, 741–773.

Leonard, A. & Wray, A. A. 1982 A new numerical method for the simulation of three–dimensional
flow in a pipe. In Eighth Intl Conf. on Numerical Methods in Fluid Dynamics (ed. E. Krause),
pp. 335–342. Springer.
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